Transcriptional Landscape of Cardiomyocyte Maturation

Graphical Abstract

Highlights

- Transcriptional landscape during cardiomyocyte maturation
- A GRN-based method to assess maturation status of cardiomyocytes is developed
- PSC-CMs undergo maturation but are arrested at the late embryonic stage
- Misregulated transcriptional factors may alter PSC-CM maturation in vitro

In Brief

Based on maturation stage-specific gene regulatory networks, Uosaki et al. develop a method to assess the maturation status of cardiomyocytes and find that the maturation of PSC-CMs is arrested at a late embryonic stage with inactive PPARs and active CTNNB1.

Accession Numbers

GSE73233

Authors

Hideki Uosaki, Patrick Cahan, Dong I. Lee, ..., Laviel Fernandez, David A. Kass, Chulan Kwon

Correspondence

ckwon13@jhmi.edu

Uosaki et al., 2015, Cell Reports 13, 1705–1716
November 24, 2015 ©2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.10.032

Cell Reports

Cell Press
Transcriptional Landscape of Cardiomyocyte Maturation

Hideki Uosaki,1,2 Patrick Cahan,3,4,5,6 Dong I. Lee,1 Songnan Wang,1,2 Matthew Miyamoto,1,2 Laviel Fernandez,1,2 David A. Kass,1 and Chulan Kwon1,2,*

1Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
3Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
4Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
5Harvard Stem Cell Institute, Cambridge, MA 02138, USA
6Present address: Institute for Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
*Correspondence: ckwon13@jhmi.edu
http://dx.doi.org/10.1016/j.celrep.2015.10.032
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.

INTRODUCTION

The term “development” refers to the process of growing from an immature pluripotent condition to one of organ-/cell-specific maturity. Over the past few decades, major advances have been made in understanding heart development. However, these efforts mostly focused on early developmental processes such as cell differentiation and proliferation (Kathiriya et al., 2015; Kwon et al., 2009; O’Meara et al., 2015; Shenje et al., 2014; Srivastava, 2006), while control over maturation remains largely unknown. This lack of the knowledge may be attributed to the nature of maturation that typically occurs over a long period of time following terminal differentiation.

The maturation of cardiomyocytes (CMs) initiates at mid-gestation and continues until adulthood. During this process, CMs gradually become elongated and rectangular, and the sarcomeres align and organize (Hirschy et al., 2006; Hoshino et al., 2012). To propagate electrical activity into the CMs, transverse tubules (T-tubules) invaginate into the cells during postnatal development (Di Maio et al., 2007; Ziman et al., 2010). Intercalated discs connect CMs to neighboring CMs to allow simultaneous contraction. Connexin 43 and N-cadherin, key components of intercalated discs, are expressed in CMs from early development, but specifically localize to intercalated discs postnatally (Vreeker et al., 2014). These structures are indispensable to CM function. Morphological and structural changes, coupled with gene expression changes, such as isoform switches of sarcomere proteins, occur simultaneously, suggesting common transcriptional regulatory mechanisms may control CM maturation.

Pluripotent stem cells (PSCs) hold great promise for regenerative medicine, disease modeling, and drug discovery because they can differentiate into any cell types in the body with a patient-specific genetic background. Methods to differentiate of PSCs in vitro have been reported (Hayashi et al., 2011; Yamashtia et al., 2000). PSC-derived CMs (PSC-CMs) are among the most desired and studied cell types as live CMs are rarely ever obtained from patients. Although PSC-CMs can be efficiently induced from PSCs (Kattman et al., 2011; Uosaki et al., 2011), proper maturation of PSC-CMs remains a critical hurdle for recapitulating the adult phenotype. Recent studies have suggested long-term culture, extrinsic stimuli, or culturing on micropatterned substrates may improve cell morphology and enhance CM maturation (Lundy et al., 2013; Salick et al., 2014; Yanagi et al., 2007; Yang et al., 2014). However, whether these cells truly mature for meaningful use as a model for adult-heart diseases has not been established.
Understanding the transcriptional landscape, including gene expression profiles, signaling pathways, and upstream transcriptional regulators, has yielded major insights into development and disease processes (McKinney-Freeman et al., 2012; Miller et al., 2014). For instance, earlier cardiac transcriptome studies revealed a congenital heart disease interactome (Li et al., 2014) or regulation of CM proliferation and heart regeneration (Gan et al., 2015; O’Meara et al., 2015). Recent advances in bioinformatics have allowed reconstruction of gene regulatory networks (GRNs) from expression profiles (Cahan et al., 2014; McKinney-Freeman et al., 2012; Miller et al., 2014). Here, we examined multi-stage microarray datasets obtained from developing hearts and generated an atlas of gene expression, pathways and transcriptional regulators, and reconstructed GRNs during CM maturation. We developed a microarray-based program that can index CM maturation status, named MatStatCM.

Based on these, we show PSC-CMs undergo maturation early but this becomes arrested at a late embryonic stage even after long-term culture. We further identified transcriptional regulators defective in PSC-CMs that may cause maturation arrest.

Figure 1. Principal Component Analysis of CM Maturation
(A) Experimental scheme. We obtained cardiac microarray datasets from GEO, ranging from early embryonic to adult hearts. Using the datasets, we dictated transcriptional landscape of cardiomyocyte maturation with gene expression profile, biological function (KEGG pathway), upstream transcriptional regulators (using IPA) and reconstructing GRNs. These analyses were integrated to generate an atlas and prediction of cardiomyocyte maturation.

(B and C) PCA plots of 213 microarray datasets. Early embryonic (E8–E11, n = 17, green), mid-embryonic (E12–E14, n = 39, black), late embryonic (E16–E18, n = 26, orange), postnatal (P3–P10, n = 16, blue), and adult (n = 114, red). (B) Plot of PC1 and PC2. Linear regression lines for each stage were shown. Samples were clustered and aligned through PC1 axis as maturation progress.

(C) Plot of PC2 and PC3. Most of the samples were clustered and no pattern for maturation was evident.

(D) Proportion of variances in each principal component. PC1 and PC2 represented ~60% of variance in original data.

(E) Box plot of PC1 value for each stage. Box represents 25th to 75th percentile, mid lines indicate median, and the whiskers show the smallest to largest values. Outliers (more than 2SD) were shown as circles.

See also Figure S1 and Table S1.

RESULTS

Global Gene Expression Patterns during Heart Maturation

To assess altered gene expression patterns in developing hearts, we performed a meta-microarray analysis with datasets deposited to Gene Expression Omnibus (GEO). We obtained 39 microarray experiments on the Affymetrix mouse 430 2.0 platform (Table S1) annotated with heart and/or CM, which consist of 658 microarray datasets. Among the 658, 492 microarray datasets were directly related to hearts, CMs, and PSCs differentiated toward CMs. We narrowed the analysis to 213 microarray datasets of wild-type mouse embryos, neonates, and adults, obtained under normal physiological conditions (Figure 1A). As the heart is composed of CMs and non-CMs such as endothelial cells and fibroblasts, we eliminated genes enriched in non-CMs using purified CM data at mid-embryonic and postnatal stages (Ieda et al., 2009; 2010), which yielded 17,848 genes.

To analyze overall gene expression patterns of the selected data, we used principal component analysis (PCA), which is a standard statistical method to compress and summarize entire microarray information to two or three dimensions, while retaining most of the expression variation in the data (Figures 1B–1D and S1) (Raychaudhuri et al., 2000; Ringnér, 2008). In the PCA plots (Figures 1B and 1C), respective stages were colored. In
the plot of the first principal component (PC1) and PC2, samples from each stage were well aligned (Figure 1B). In contrast, in the plot of PC2 and PC3, most of samples were clustered, and seven outliers were observed (Figure 1C). PC1 accounted for 40.9% of variations of the original data (Figure 1D). PC2 and PC3 accounted for 18.7% and 6.8%, respectively. The rest of PCs accounted for <5% (Figure 1D). Given that PC1 accounted for the major portion of variations, the constant increases in PC1 values from early to late developmental stages (Figures 1B and 1E) suggest that overall gene expression shifts continually in a unidirectional fashion. Samples from each stage were clustered to two in PC2 values; however, they may reflect lab-to-lab variations as samples from a single experiment were clustered to one side (Figures S1A and S1C). One experiment (GEO: GSE1479) used atria and ventricles rather than entire hearts. Notably, both atria and ventricles increased PC1 values at later stages, implying that maturation-related genes might be similarly regulated in both chambers (Figure S1B). While atria had significantly lower values than ventricles, this is likely due to the weights of ventricle-specific genes in calculating PC1 values. These data suggest that overall gene expression patterns change gradually over the course of CM maturation.

An Atlas of Temporal Gene Expression and Regulation during Heart Maturation

Because PCA revealed gradual and unidirectional transcriptional changes during maturation, we next explored how differentially regulated genes are involved in biological functions and in turn how the transcriptional changes are regulated. To this end, we developed a multilayered atlas of gene expression and regulation, temporal changes of gene expression, pathways, and upstream transcriptional regulators from one stage to the next. First, we selected genes that changed at least 2-fold to the next stage (p < 0.01); 576 early to mid-embryonic stage, 306 mid- to late embryonic stage, 431 late embryonic to neonatal stage, and 1,152 neonatal to adult stage genes (Figure 2) were identified (a full gene list is found in Table S2). In agreement with PCA observations of gradual and unidirectional changes, most of the genes continued their expression trends (upregulated or downregulated) throughout the stages, and only small subsets returned to the baseline at later stages (Figures 2E–2H).

Second, to determine how the genes are involved in CM function, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis with the genes identified (Figures 2I–2P; Table S3). We found that the peroxisome proliferator-activated receptor (PPAR) pathway (mmu03320) is the only pathway enriched in all comparisons, indicating the activity of the PPAR pathway increases throughout the maturation. The cardiac muscle contraction pathway (mmu04620) and cardiovascular disease pathways, including dilated cardiomyopathy (DCM, mmu05414), hypertrophic cardiomyopathy (HCM, mmu05410), arrhythmogenic right ventricular cardiomyopathy (ARVD, mmu05412), and viral myocarditis (mmu05416), contain structural genes (e.g., sarcomere, desmosome, and sarcoglycan genes) in different compositions. These cardiac pathways were enriched in the upregulated group of genes up to the neonatal stage. However, none of them were enriched in upregulated genes from neonate to adult, suggesting that the activities of those pathways do not change after the neonatal stage. While the fatty acid metabolism pathway (mmu00711), which is essential for the energy supply to adult CMs, was enriched in the upregulated group of genes during embryonic development, carbohydrate metabolism pathways, including glycolysis (mmu00010), pentose phosphate pathway (mmu00300), fructose and mannose metabolism (mmu00562), and galactose metabolisms (mmu00052), were enriched in the group of downregulated genes at the neonatal stage. From the mid-embryonic stages, cell-cycle (mmu04110) and its related pathways were constantly enriched in the group of downregulated genes.

Finally, to determine which upstream transcriptional regulators are involved in maturation in temporal manner, we performed upstream regulator analysis with the ingenuity pathway analysis (IPA) software (http://www.ingenuity.com). This program identifies molecular relationships among genes and infers upstream regulators with its curated database from published studies. IPA software calculates an activation Z score of a transcriptional regulator based on the fold change and p value of genes under the control of the regulator between two groups. Thus, activation Z scores correspond to activity changes between the two groups. To assess temporal transcriptional changes, we used the differentially regulated genes between one stage and the next as described above for IPA upstream regulator analysis. Based on this analysis, we identified upstream transcriptional regulators activated temporally at each stage of CM maturation (Figures 2Q–2S). Most of the regulators changed their activities at one stage or subsequent two stages (Figures 2Q–2S). While only a small subset of genes identified in Figures 2A–2D overlapped, there were transcriptional regulators that incrementally changed their activities (Figure 2S). This suggests that the transcriptional regulators control different genes at each stage.

Our multilayered and temporal atlas of gene expressions, pathways, and upstream transcriptional regulators reveals the process of CM maturation at the transcriptional level.

Development of MatStatCM to Predict Maturation Status of CMs

A GRN-based method has emerged as a more reliable way for predicting cell and tissue status than clustering (Cahan et al., 2014). Thus, we tested if GRNs can be used to predict the status of CM maturation. To reconstruct stage-specific GRNs of the heart, we first identified genes that were more predominately expressed in each stage, using a single dataset, covering all stages (GEO: GSE51483; Figures S1C and S3A; Table S4) (Li et al., 2014). Then, to identify the upstream regulators and downstream targets of these genes, we examined a reported pan cell-type and tissue GRN (Cahan et al., 2014). While the generic heart GRN included well-known regulators (e.g., Nkx2-5, Gata4, Tbx5, and Myocd), stage-specific GRNs included fewer characterized regulators in the heart (Figures 3A–3D). We trained random forest classifiers for each stage with expression distributions estimated from the GSE51483 training dataset. We assessed the performance of the stage-specific classifier by applying it to independent studies of defined stages of heart development. We found that the GRN-based classification accurately determined the stage of origin of the profiles and could...
detect transition of E15.5 and P7 neonatal heart from earlier to later stages (Figures 3E–3H).

PSC-CMs Matured to Late Embryonic-Neonatal Stage in Culture

We next asked whether PSC-CMs mature into adult-like cells and how mature are they in maturation-enhanced conditions. Current approaches have not addressed this question, and so we tested if global gene expression and/or MatStatCM could determine maturation status of PSC-CMs. To do this, we employed a long-term culture condition, previously shown to enhance CM maturation (Lundy et al., 2013; Yanagi et al., 2007). We differentiated mouse PSCs to CMs and cultured them for up to 30 days. PSC-CMs began to beat at days 7–8 after differentiation, and cells were positive for α-actinin, a sarcomere protein, but did not have clear sarcomere pattern at day 10 (Figure 4A). At days 20 and 30, sarcomeres were well aligned (Figure 4A). As mouse PSCs are typically isolated from embryonic day (E) 3.5 embryos, cultured PSC-CMs at days 10 and 20 are presumed to be at mid-embryonic and postnatal stages, respectively, if maturation is regulated intrinsically and progresses the same as its embryonic counterparts.

To assess the maturation status of PSC-CMs cultured in vitro, we imposed microarray data of PSC-CMs to PCA plot and performed MatStatCM analysis (Figures 4B–4D). With PCA to indicate the global gene expression pattern, PSC-CMs positioned around early to mid-embryonic stages at day 10 and moved to late embryonic stage at day 20 (Figure 4B). Notably, PSC-CMs did not reach to the neonatal stage even at day 30. MatStatCM classified PSC-CMs at day 10 to early embryonic stage and PSC-CMs at days 20–30 were classified to mid- to late-embryonic stages (Figure 4C). PSC-CMs robustly exhibited the early embryonic GRN at day 10 and the late embryonic/neonatal GRN at days 20–30 (Figure 4D). PSC-CMs at days 20–30 also increased the adult GRN. Compared to the sharp transition of the GRNs in vivo, the transition of the GRNs in PSC-CMs was dull, suggesting that their gene expression pattern is not coherent as that of endogenous CMs. All of these data suggest that PSC-CMs mature in long-term culture but then arrest at the late embryonic stage.

To ask if these findings correlate with physiological features, we used Ca2+ imaging to compare ventricular and atrial CMs (Figures 4E and 4F). We measured intracellular calcium concentration with Fura-2 dye. We plotted the ratiometry of calcium bound (380 nm) and unbound (340 nm) Fura-2 was plotted (Figure 4E), and time-to-peak-50% and time-to-baseline-50% were used to quantitatively assess velocity of the change in intracellular calcium concentration (Figure 4F). Ventricular CMs displayed slow upstroke and downstroke velocities at E12 (238 ± 21 ms and 1,373 ± 42 ms, respectively). Both velocities increased as maturation progressed (up/down: 54 ± 2/944 ± 48 ms at P0, 44 ± 1 ms/320 ± 8 ms at adult). Atrial CMs displayed greater velocities than ventricular CMs and did not change during embryo development (up/down: 54 ± 5/645 ± 84 ms at E12 and 44 ± 1/613 ± 16 ms at P0). While ventricular CMs displayed no difference in F/F0, which corresponds to the degree of change in intracellular calcium concentration, during embryo development (E12: 17 ± 3 and E18: 20 ± 3), atrial CMs displayed significant increase in F/F0 (E12: 10 ± 1 and E18: 23 ± 3). Upstroke and downstroke velocities of the change in intracellular calcium concentration in PSC-CMs increased after long-term culture (up/down: 167 ± 18/1,125 ± 33 at d10, 105 ± 22/760 ± 48 at d20 and 63 ± 10/666 ± 45 at d30). However, while downstroke velocities at days 20 and 30 were greater than P0 ventricular CMs, upstroke velocities were still slower. Ca2+ imaging revealed that PSC-CMs matured to late embryonic/neonatal stages, but their physiological features were incoherent.

Putative Causes of Maturation Arrest In Vitro

PCA, MatStatCM, and physiological experiments showed that in-vitro-cultured PSC-CMs become similar to the late embryonic stage CMs but did not progress further. This suggests that genes are regulated differently in PSC-CMs during their maturation in vitro. To identify the genes and regulators, we analyzed genes differentially regulated in PSC-CMs by comparing them to late embryonic and neonatal hearts and adult hearts. For this analysis, we focused on the 1,917 genes that were differentially regulated in vivo during maturation. We found that 679 and 571 genes were differentially regulated in day 20–30 PSC-CMs as compared to late embryonic/neonatal hearts (2-fold difference, p < 0.01, Figure S3) and adult hearts (at least 4-fold difference, p < 0.01, Figure S3), respectively. Next, we used IPA to identify upstream transcriptional regulators showing distinct activities in PSC-CMs compared to in vivo counterparts. Based on their activity changes, we further classified the regulators into eight types (Figure 5). The first four types consisted of regulators with activities similar to their in vivo counterparts at the late embryonic/neonatal or adult stage (Figure 5, i–iv). The next two types exhibited higher activities than late embryonic/neonatal hearts and lower activities than adult hearts and vice versa.
Figure 3. MatStatCM: GRN-Based Prediction System for CM Maturation

(A–D) Stage-specific GRNs. GRNs of early embryonic (A), mid-embryonic (B), late embryonic/neonatal (C) and adult (D) heart. Each node represents a member of GRN, and factors highlighted in red are transcriptional regulators identified in GRN at each stage. Relationships between regulators and members are shown in lines. All nodes are listed in Table S4.

(E–H) Assessment of performance with independent datasets from E9 (E, GEO: GSE28186), E13-15 (F, GEO: GSE32078), E18 (G, GEO: GSE8199), and P7-adult (H, GEO: GSE38754). Each column represents one microarray dataset and classified values of GRN status for each stage were shown as heatmap. See also Figure S3 and Table S4.
While they were different from their in vivo counterparts in activity levels, most of their activities shifted into the right direction: the regulators in the classes were activated (Figure 5, v) or inactivated (Figure 5, vi) from neonate to adult (Figure 2). As such, these six types of regulators may not alter the normal trajectory of maturation in vitro. In contrast, the last two types were the groups of regulators whose transcriptional activities were continuously higher or lower than their in vivo counterparts throughout the stages (Figure 5, vii and viii). In particular, regulators incrementally activated throughout the maturation (Figure 2S) were found inactive in PSC-CMs (Figure 5, vii, PPARA/G, PPARGC1A, and CEBPA/B). Similarly, CTNNB1 was incrementally inactivated during maturation in vivo, but remained active in PSC-CMs (Figure 5, vii). Thus, misregulation of these regulators may be responsible for the aberrant maturation of PSC-CMs in vitro.

DISCUSSION

In the current study, we (1) developed an atlas of temporal gene expression, pathways, and regulations during heart maturation, and (2) established a method to determine CM maturation status with microarray and stage-specific GRNs, named MatStatCM (Figure 6). With the integrated approach, we demonstrated that PSC-CMs can undergo maturation early but arrest at the late embryonic stage after long-term culture. We believe this information will lay the foundation for understanding CM maturation and be instrumental for generating adult CMs from PSCs.

This multilayered analysis provides fascinating insights into understanding CM maturation, which were not demonstrated in previous studies (Li et al., 2014; Gan et al., 2015; O’Meara et al., 2015). We found that the atlas of temporal transcriptional regulations was well correlated with transcriptional and KEGG pathway changes (Figure 2; Tables S2 and S3). Most of the regulators were activated or inactivated only once during maturation (Figure 2Q). According to the IPA results, once a regulator was activated, it remained constantly activated unless inactivated at later stages (Figure 6A). MEF2C, GATA4, TBX5, MYOCD,
and HIF1A were transiently activated factors from mid- to late embryos. Among those genes, MEF2C, GATA4, and TBX5 were known as the essential regulators to convert fibroblasts into CMs in mice, and MYOCD was one of the additional factors necessary for the conversion in human. These findings suggest they play important roles in activating cardiac pathways (Ieda et al., 2010; Wada et al., 2013). However, the cardiac pathways were also enriched in other stages, suggesting the presence of alternative regulators (e.g., Regulators in generic GRNs such as Hopx and Nkx2-5 in the earlier stage, Figure S3). In addition to the activated regulators, there were inactivated regulators. For example, Aryl hydrocarbon receptor nuclear translocator (ARNT) was inactivated at the neonatal stage, suggesting that the regulator may affect its downstream target genes in embryonic hearts. Activation of TP53 and inactivation of MYC cause cell-cycle arrest and are consistent with the pathway analysis that revealed the cell-cycle pathways enriched in downregulated genes during the maturation (Figures 2N–2P; Table S3). They changed their activities incrementally, and additional cell-cycle repressors, retinoblastoma 1 (RB1), retinoblastoma-like 1 (RBL1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) were highly activated, whereas the cell-cycle accelerators, cyclin D1 (CCND1) and E2F1-3 were inactivated in adult. As a result, the cell-cycle pathway was enriched in downregulated genes from the earlier stages, and more cell-cycle-related pathways were enriched in downregulated genes at the adult stage. Interestingly, the PPAR pathway was the only pathway enriched in upregulated genes throughout the maturation. PPAR is considered as a master regulator of fatty acid metabolisms (Evans et al., 2004) and it was incrementally activated through maturation. Pathway analysis also revealed how metabolic changes are accomplished in vivo. Embryonic CMs use glycolysis to generate energy, but adult CMs use fatty acid oxidation (Lopaschuk et al., 1992). During embryonic development, fatty acid metabolism pathway was increased, and glycolysis pathway was decreased upon birth, suggesting that late embryonic CMs could utilize fatty acid but still they use glycolysis due to the limited supply of oxygen.

Previous studies reported enhanced PSC-CM maturation in long-term culture; however, the degree of maturation was unknown. Our approach with a reference from in vivo maturation provided a quantitative perspective on CM maturation, revealing...
that PSC-CMs progress through maturation but then are unexpectedly arrested at the late embryonic stage after 20 days of culture (Figures 4, 6B, and 6C). Although the global gene expression pattern was close to late embryonic or neonatal hearts, the transition of GRNs was more diffused, and approximately one-third of the genes differentially regulated during maturation were misregulated in PSC-CMs. This implies that the activities of upstream regulators were incoherent in PSC-CMs. Indeed, approximately half of the upstream transcriptional regulators displayed their activities between late embryonic/neonatal and adult or close to either one, suggesting that they are unlikely to cause the arrest. The other half were aberrantly active or inactive as compared to in vivo counterparts, suggesting that they may be responsible for the abnormal maturation. The aberrant regulators include PPARs, PPAR gamma coactivator 1A (PPARGC1A), CCAAT/enhancer binding protein A/B (CEBPA/B), and beta-catenin (CTNNB1). It is intriguing to find them active or inactive because all of them have been implicated in CM

Figure 6. Summary of the Study
(A and B) Using microarray analysis, we developed an atlas (A) and a prediction method of CM maturation (B). (A) An atlas of CM maturation showing temporal transcriptional activity and pathway activity changes. (B) Prediction of CM maturation with a GRN-based method, named MatStatCM. (C) We found that PSC-CMs undergo maturation but are arrested at late embryonic to neonatal stage. There were two groups of transcriptional regulators: (1) the activities of transcriptional regulators were between late embryo/neonate and adult, and (2) too high or too low, compared to the in vivo counterpart.
maturation: (1) PPARs regulate fatty acid metabolism in heart
and CM-specific deletion of PPARs results cardiac diseases
such as cardiomyopathy and hypertrophy (Ahmadian et al.,
2013; Finck, 2007), (2) PPARGC1A/B, coactivators of PPARs,
and other nuclear receptors, regulate mitochondrial biogenesis
in heart (Lehman et al., 2000), (3) CEBPB inhibits CM prolifera-
tion and hypertrophy (Boström et al., 2010), (4) activation of
CTNNB1 increases CM proliferation and causes sarcomere
disarray, suggesting that CTNNB1 alters CM maturation (Tseng
et al., 2006; Uosaki et al., 2013), and (5) to recapitulate ARVD,
an adult-onset heart disease with pathogenic fatty acid infiltra-
tion in CMs and CM loss, with patient-derived hPSC-CMs,
a cocktail of chemicals including dexamethasone (NR3C1/
gluocorticoid receptor) and Rosiglitazone (PPARD), was used
to create a lipogenic condition (Kim et al., 2013). Further
studies will be necessary to determine their roles for PSC-CM
maturation.

Our method can be applied to the other culture conditions
known to enhance CM maturation: long-term culture, supple-
mentation of factors (e.g., thyroid hormone), micro-patterning,
and electrical and mechanical stimulation were reported to
enhance CM maturation (Chan et al., 2013; Nunes et al., 2013;
Salick et al., 2014; Yang et al., 2014). As no tool has been avail-
able for maturation analysis, it was almost impossible to
compare and determine which maturation method is better
and how mature the CMs are in each study. MatStatCM can
be a powerful tool to compare and determine CM maturation status,
as it is a computer program designed to inform the transcrip-
tional status of CM maturation in a non-biased fashion, de-
veloped based on well-standardized microarray platform, and
running on statistical software R (Figure 3; see Data S1 for codes
and datasets). The limitation of MatStatCM is that the current
version only supports the mouse 430 2.0 microarray chip due
to the limited number and time points of microarray datasets
conducted with other chips, such as newer mouse gene 1.0
ST, chips for human genes and RNA sequencing (RNA-seq).
We expect to update/upgrade the prediction program as more
information becomes available.

The current study utilized bioinformatics to determine tran-
scriptional networks and regulators during CM maturation.
Thus, it will be important to investigate expression kinetics
of each transcriptional regulator and its target genes by biochem-
ical methods, such as chromatin immunoprecipitation. Similar to
transcriptional regulators, microRNAs (miRNAs) also regulate a
large number of genes with specific biological functions (He
and Hannon, 2004) and were implicated in CM maturation. For
instance, conditional knockout of Dicer1, a key regulator of
miRNA biogenesis, in the embryonic heart resulted in dilated
cardiomyopathy-like phenotypes with misexpression of cardiac
contractile proteins and profound sarcomere disarray, sug-
gesting that miRNAs are involved in maintaining CMs (Chen
et al., 2008; da Costa Martins et al., 2008). Given that several
miRNAs are involved in CM proliferation and maturation (Cao
et al., 2013; Eulalio et al., 2012; Kuppusamy et al., 2015), it will
be interesting to study if the transcriptional regulators identified
in this research affect maturation-related miRNAs. It would also
be important to investigate the role of miRNAs during CM
maturation.

EXPERIMENTAL PROCEDURES

Microarray Analysis

Microarray analysis used the statistical software Bioconductor R (Gentleman et al., 2004; Huber et al., 2015). We obtained 658 datasets annotated with heart and/or CMs from GEO. List of datasets and a brief description are found in Table S1. We performed frozen robust multi-array average (RMA) (McCall et al., 2010) to normalized the datasets. To convert probe sets to each gene, we selected a probe-set with widest dynamic range (Geta et al., 2012). We eliminated non-CM-enriched genes in heart (1.5-fold and moderated p value <0.05; ~3,000 genes) (Geta et al., 2009, 2010). Principal component analysis (PCA) was performed using R function procmp with standard condi-
tion. We used empirical Bayes (limma package) to compare expressions among samples (Ritchie et al., 2015), and thresholds for fold change and moderated p value were determined in the main text and figure legends. Heat-
maps were generated using the R function pheatmap. For Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we use DAVID Bioinformat-
ics Database (Huang et al., 2009b; 2009a). To infer upstream regulators, we
used ingenuity pathway analysis (IPA) (http://www.ingenuity.com). To recon-
struct stage-specific GRNs of the heart and assess GRN status, we used
pan cell-type and tissue GRNs and the calculation method that has been
described and validated (Cahan et al., 2014). Source codes and datasets for
PCA, GRN reconstruction, and MatStatCM can be found in Data S1. Codes
for CellNet, which are required for GRN reconstruction and MatStatCM, are

PSC Culture and Cardiac Differentiation

Mouse PSCs with a cardiac-specific Ncx1 promoter-driven puromycin resistance gene (Yamanaka et al., 2008) were maintained in 2i medium (Glasgow minimum essential medium with 10% fetal bovine serum, 1,000 U/ml ESGRO [Millipore], 3 μM CHIR99021, 1 μM PD0325901, Glutamax, sodium pyruvate, and MEM non-essential amino acids) (Josaki et al., 2012). For cardiac differ-
tentiation, cells were suspended in serum-free differentiation medium (SFD) (Isocoe’s modified Dulbecco’s medium and F-2 medium, supplemented with
B27, N2, Glutamax, ascorbic acid, and 1-thyoglyceral) (Kattman et al.,
2011) for 2 days. Cells were subsequently treated with Activin A, bone morpho-
genetic protein 4 (BMP4), and vascular endothelial growth factor (VEGF) for
2 days. Then, cell clusters were dissociated and replated with basic fibroblast
growth factor (bFGF), FGF10, and VEGF for 3 more days. By day 7 after differ-
etentiation, cells start self-beating. To eliminate non-cardiac cells, we added pu-
romycin for 2–3 days. At days 9–10, we analyzed CM purity by cardiac troponin
T staining (Josaki et al., 2011) and cells with at least 90% purity were used for
further analysis. For long-term culture, we replated differentiated cells at day 9
and cultured up to 30 days after differentiation in SFD medium.

Immunostaining

For immunostaining, cells were cultured in chamber slide, fixed with 4% para-
formaldehyde for overnight, washed with PBS, permeabilized with PBS-Triton
X, blocked with 3% BSA in PBS, and incubated with anti–α-actinin antibody
(1:500, Sigma-Aldrich) for overnight. Cells were washed and stained with sec-
ondary antibody, anti-mouse IgG (1:500, Invitrogen) conjugated with Alexa-
Fluor dye (Invitrogen). DNA was stained with DAPI. Images were taken with a
confocal microscope (Leica TCS SPE RGBV).

RNA Purification and Microarray

RNA was isolated from cells using TRizol following manufacturer instruction
and then submitted to microarray core at Johns Hopkins University. The
accession number for the full dataset of PSC-CMs reported in this paper is
GEO: GSE73233.

Ca2+ Transient

To analyze Ca2+ transient with embryonic and postnatal CMs, hearts were
minced and enzymatically dissociated with collagenase and trypsin. Cells were
then seeded on gelatin or laminin-coated cover glasses in SFD medium
supplemented with 10% serum and analyzed the following day. Adult CMs
were then seeded on gelatin or laminin-coated cover glasses in SFD medium
supplemented with 10% serum and analyzed the following day. Adult CMs
were isolated with Langendorf perfusion and used in the same day (See
et al., 2014). All mouse procedures were reviewed and approved by the Johns
Hopkins University. PSC-CMs were differentiated as described above and then replated at day 9 for the experiments at day 10 or replated around day 15 for the experiments at day 20 and 30. To assess cytosolic Ca\(^{2+}\), cells were loaded with Fura-2 dye in Tyrode’s solution for 20 min. Cytosolic Ca\(^{2+}\) was monitored with IonOptix system, using excitation wavelengths of 340 and 380 nm to detect Fura-2 fluorescence at 510 nm. Cells were stimulated every 2 s.

ACCESSION NUMBERS

The accession number for the full dataset of PSC-CMs reported in this paper is GEO: GSE73233.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, four tables, and one data file and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.10.032.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

The authors thank D.A.K. and C.K. laboratory members for helpful discussions and G. Howard for editorial assistance. This work was supported by the Magic Grants Program (K01DK096013). D.A.K. was supported by National Health Service-NHLBI Bayer Yakuhin Research Grant Abroad and fellowships from the Japan Society for the Promotion of Science and MSCRIF. P.C. was supported by NIDDK/NIH (K01DK096013). D.A.K. was supported by National Health Service-NHLBI grants HL-119012, HL-107153, and Fondation Leducq.

Received: June 28, 2015
Revised: August 19, 2015
Accepted: October 9, 2015
Published: November 12, 2015

REFERENCES

